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In this paper we study a simple cascading process in a structured heterogeneous population, namely, a
network composed of two loosely coupled communities. We demonstrate that under certain conditions the
cascading dynamics in such a network has a two-tiered structure that characterizes activity spreading at
different rates in the communities. We study the dynamics of the model using both simulations and an
analytical approach based on annealed approximation and obtain good agreement between the two. Our results
suggest that network modularity might have implications in various applications, such as epidemiology and
viral marketing.
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I. INTRODUCTION

Networks are a useful paradigm for studying complex
systems composed of large numbers of interconnected com-
ponents �1–3�. There has been a growing interest in applying
network analysis to examine various biological �4,5�, eco-
logical �6–8�, technological �9–11�, and even political �12�
systems. Research on various statistical properties of such
networks has revealed many interesting phenomena. For in-
stance, the scale-free degree distributions observed in many
real-world networks have significant implications for various
dynamical processes on such networks. In particular, the dy-
namics of SIR �susceptible-infected-removed� epidemic pro-
cesses in certain scale-free networks are characterized by a
vanishing threshold for epidemics �13�, in sharp contrast
with results for the random Erdos-Renyi networks.

Another interesting property of networks is modularity,
the tendency of nodes to partition themselves into communi-
ties �14,15�. Loosely speaking, a community is a group of
nodes for which the density of links within a group is higher
than across the groups. Much recent research has focused on
methods for detecting and analyzing community structure in
networks �for a recent review of existing approaches see �16�
and references therein�. However, the dynamical properties
of modular networks have received relatively little attention
despite the potential importance of the subject to problems
such as epidemiology, viral marketing, and so on. Consider,
for instance, word-of-mouth �or viral� marketing of a new
product. If different consumer groups have different rating
criteria for the product, or different reaction to marketing
strategies, then one needs to model how influence propagates
within and across communities to predict whether the prod-
uct will be a hit, or confined to a small subset of consumers.
A similar argument holds for epidemic models where nodes
are heterogeneous with respect to their susceptibilities and/or
interactions patterns �17–19�. For instance, Gupta et al.
showed that the transient dynamics of sexually transmitted
infection can be very different, depending on whether the
network of sexual contacts is assortative or disassortative
�17�. More recent work has addressed the role of the modu-
larity on dynamics of cascading failures in scale-free net-
works �20�, and synchronization patterns of networked oscil-
lators �21�. In particular, Ref. �21� demonstrated that the

modularity of networks is strongly reflected in their synchro-
nization dynamics, so that communities emerge as connected
groups of synchronized oscillators.

The goal of this paper is to further improve our under-
standing of the connection between network modularity and
its dynamics. Specifically, we examine the effects of modu-
larity on a simple, threshold-based activation process on net-
works. Starting with a modified version of Watts’ cascading
model �22�, we study its dynamical properties for networks
composed of two loosely coupled communities. Our main
observation is that if the initially active nodes �seeds� are
contained in one of the communities, then under certain con-
ditions the cascading process has a two-tiered structure, that
is, the peaks of the activation dynamics in each community
are well-separated in time. We present results of simulations
as well as analytical results based on annealed approxima-
tion, and observe a good agreement between the two.

II. MODEL

Let us consider a network where each node is in one of
two states: passive and active. Initially, all but a small frac-
tion of seed nodes are passive. During the cascade process, a
passive node will be activated with probability that depends
on the state of its neighbors. In Watt’s original model �22�
this probability is p=��hi /ki−��, where � is the step func-
tion, hi and ki are the number of active neighbors and the
total number of the neighboring nodes, respectively, and �i is
the activation threshold for the ith node. Here we consider a
slight modification of the original model by using a threshold
condition on the number of active neighbors rather than their
fraction: p=�−1��hi−Hi�, where � determines the time-scale
of the activation process. For the sake of simplicity, we as-
sume that all nodes have the same activation threshold, Hi
=H for all i.

Clearly, the dynamics of the cascade process will depend
on both network structure and the threshold parameter H.
Here we are interested in the case when the network is com-
posed of two loosely coupled communities. Namely, we con-
sider a random graph consisting of N=Na+Nb nodes of two
different types, a and b. The probabilities of edges between
nodes of different types are �aa, �bb, and �ab=�ba, and the
average connectivity between nodes of the respective types
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are then zaa=�aaNa, zbb=�bbNb, zab=�abNb, and zba=�abNa.
We want to find out how the modularity of the network, as
described by the coupling between the groups, affects the
cascading process.

Let �a
0 and �b

0 be the fraction of seed nodes in each popu-
lation. Further, let Pa�h ; t� and Pb�h ; t� be the probability
distribution that a randomly chosen node of corresponding
type is connected with exactly h active nodes at time t. It is
easy to see that Pa�h ; t=0� and Pb�h ; t=0� are Poisson dis-
tributions with means zaa�a

0+zab�b
0 and zbb�b

0+zba�a
0, respec-

tively. To study the dynamics of the process, we need to
estimate these distributions for later times. This is particu-
larly straightforward to do within the annealed approxima-
tion, e.g., by “rewiring” the network after each iteration �23�.
Indeed, since all edges of corresponding type are equally
likely, it is easy to see that Pa�h ; t� and Pb�h ; t� are still given
by Poisson distribution, with the means that now depend on
the fraction of active nodes �a�t� and �b�t�: Pa,b�h ; t�=P
(�a,b�t�), where �a=zaa�a�t�+zab�b�t� and �b=zbb�b�t�
+zba�a�t�.

On the first step of the cascading process, the fraction of
activated nodes of each type is given by �−1�h�HPa,b�h ; t
=0�. In later iterations, we can calculate the fraction of active
nodes as follows. Let us consider, for instance, a nodes.
There are Na�1−�a�t�� passive nodes at time t, and each one
of these nodes will be activated with the rate
�−1�h�HPa�h ; t�. Also, due to the rewiring, some of the
Na��a�t�−�a

0� active nodes will switch to a passive state with
the rate �−1�h�HPa�h ; t�. We note that the seed nodes never
deactivate. Combining these together, and using the normal-
ization condition �h=0

	 Pa,b�h ; t�=1, we obtain in the con-
tinuos time limit

�
d�a,b

dt
= 1 − �a,b − �1 − �a,b

0 �Q�H;�a,b� , �1�

where Q�n ,x�=�k�ne−xxk /k! is the regularized gamma func-
tion.

Equation �1� determines the time evolution of the cascad-
ing process in each group. Let ��t�=
�a�t�+ �1−
��b�t�, 

=Na / �Na+Nb� be the fraction of active nodes in the whole
network. In Fig. 1 we compare the solutions obtained from
Eq. �1� with the results of simulations on randomly generated
graphs for the same network parameters but two different
values of the threshold parameter. The parameters of the net-
work are Na=5000, Nb=15 000, zaa=zbb=15, zab=4. The
fraction of seed nodes is �a

0=0.1 and �−1=0.1. The simula-
tions are averaged over 100 random realizations.

The agreement between the analytical prediction and re-
sults of the simulations is quite good. The network settles to
the same steady state for both values of the threshold param-
eter H: that is, all of the nodes are activated at the end of the
cascading process. However, the transient dynamics depend
on the threshold parameter H. For H=2, activation spreads
very quickly through both communities and after a short in-
terval all of the nodes are activate. For H=4, on the other
hand, the fraction of active nodes seems to saturate, then, in
later iterations, ��t� increases rapidly and eventually all the
nodes become active. In Fig. 1�b� we plot the rate of activa-

tion process d� /dt vs time for H=4. Apparently, the peak
rates of activation in the two communities are separated in
time. We call this phenomenon two-tiered dynamics. We
would like to note that previously such a multipeak structure
has been observed in Ref. �17�, where the authors studied the
impact of different mixing patterns on the spread of sexually
transmitted infection.

To better understand how two-tiered dynamics arises, we
will examine a simplified scenario. Let us assume that seed
nodes are chosen among a nodes only, so that �b

0=0. Further,
let us assume that the coupling between two populations is
not very strong, so that the cascading process among a nodes
is not affected by cross-group links. Hence the fraction of
active a nodes evolves according to the following equation:

�
d�a

dt
= − �a + ga�zaa�a� , �2�

where we have defined

ga�x� = 1 − �1 − �a,b
0 �Q�H,x� . �3�

The fraction of the population that will be activated at the
end of the cascading process is determined from the follow-
ing equation:

�a
s = ga�zaa�a

s� . �4�

Note that for sufficiently dense networks �i.e., the connec-
tivity of all nodes is greater than the threshold H� �a

s =1 is
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FIG. 1. Analytical �solid lines� and simulation �circles� results
for the activation dynamics. The upper panel shows the fraction of
active nodes vs time for threshold parameters H=2 and 4. The
lower panel shows the activation rate d� /dt vs time for H=4.
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always a solution. However, it is not always the only solu-
tion. This is shown graphically in Fig. 2, where we plot both
sides of Eq. �4� as a function of �a

s for two different connec-
tivities. For a given fraction of seed nodes the steady-state
fraction of active nodes is determined by the connectivity
zaa. In particular, for sufficiently large values of zaa, the only
intersection of the curve with the line happens at ��1, aside
from exponentially small correction of order �zH−1e−zaa, in-
dicating that the activation will spread globally. If one de-
creases zaa, however, other solutions appear as shown by the
two intersections of �a and ga�zaa�a� in Fig. 2. Specifically,
there is a critical value zaa

c so that for zaa�zaa
c the cascading

dynamics dies out, while for zaa�zaa
c it spreads throughout

the system. Let us define x=zaa�a
s , and rewrite Eq. �4� as

zaa
−1x=g�x�. At the critical point, the line zaa

−1x must be tangen-
tial to g�x�. It is then straightforward to demonstrate that the
critical connectivity is given by

zaa
c = �ga��x0��−1 � 	�1 − �a

0�e−x0
x0

H−1

�H − 1�!
−1

, �5�

where x0 satisfies the following equation:

x0ga��x0� = ga�x0� . �6�

Equations �5� and �6� determine that critical connectivity
needed to cause a global cascade among a nodes for a given
fraction of seed nodes and the threshold parameter H. In Fig.
3 we compare the analytical prediction with simulation re-
sults for H=2. The simulations were done for a graph with
5�104 nodes, and for 100 random trials. Each parameter
pair ��a

0 ,zaa� was considered to be above the critical line if a
global cascade was observed in the majority of trials for that
parameter. Again, the agreement of analytical prediction and
the simulation results are excellent.

Let us examine the behavior of the critical connectivity in
the limit of small �a

0. Equation �6� can be rewritten as

e−x0� x0
H

�H − 1�!
+ �

k=0

H−1
x0

k

k!
� =

�0
a

1 − �0
a . �7�

Assuming �a
0 ,x0
1 we obtain in the leading order

x0 � 	 H!

H − 1
�a

0
1/H

. �8�

Finally, using Eq. �5� we obtain the following scaling behav-
ior:

zaa
c � ��a

0�−�H−1�/H, �9�

which is demonstrated in the inset of Fig. 3. We also note
that at the critical point the convergence time diverges as
Tconv� �z−zaa

c �−1/2.
Now consider the cascading dynamics in the second

group. Initially, there are no active nodes in this group. As
more and more a nodes are activated, the activation will
spread to the b nodes for sufficiently large across-group con-
nectivity zba. The activation dynamics is again governed by
an equation similar to Eq. �2�. In particular, the steady state
fraction of active b nodes satisfies the following equation:

�b
0 = 1 − Q�H,zbb�b

0 + �� � gb�zbb�b
0 + �� . �10�

where �=zba�a
0. Clearly, if � is sufficiently large, then the

cascade will propagate among b nodes independent of the
within-group connectivity zbb; and vise versa, however large
the connectivity zbb, there is a critical value of �a

c so that for
���c there will be no cascade among the b nodes. Let us
define x=zbb�b

0+� and rewrite the steady state equation as
follows

x − �

zbb
= gb�x� . �11�

Using the same reasoning as for the a nodes, it is easy to
show that the critical point is given by

�c = x0 − zbbgb�x0� , �12�

where x0 is the smaller of the roots of the following equation:
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FIG. 2. Graphical representation of Eq. �4�. Plotted are the
straight line y=�a

s and the function y=ga�zaa�a
s� for two different

values of zaa.
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FIG. 3. �Color online� The critical connectivity vs fraction of
seed nodes for threshold parameter H=2. The inset shows the scal-
ing behavior of zaa
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the slopes of corresponding lines�.
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gb��x0� =
1

zbb
. �13�

Note that for �a
0=1 �c is simply the critical across-group

connectivity zab
c �zbb� for which the cascade will spread to b

nodes, assuming that all a nodes have already been activated.
Hence Eqs. �12� and �13� implicitly define a critical line
zbb

c �zba� on the zbb−zba plane. Note that on this critical line
the convergence time of the cascading process among the
b-nodes, and consequently the separation of two activity
peaks, is infinite. For a fixed within-group connectivity zbb
the two-tiered structure will be present provided that zba is
only slightly above the critical line. To be more precise, let
�a

max be the fraction of active a nodes that corresponds to the
maximum activation rate among a nodes. This can be found
from Eq. �2� by differentiating the right-hand side with re-
spect to �a and setting it to zero, which yields
zaaga��zaa�a

max�=1. If the across-group connectivity is smaller
than �c /�a

max, then the cascade will not spread to b nodes
until the rate of activation spreading among a nodes starts to
decline from its peak. Consequently, the two-tiered pattern
will be present for the range �c�zba��c /�a

max.

III. SUMMARY

To summarize, we have considered a simple cascading
model on a random network consisting of two loosely

coupled communities. For a sufficiently weak coupling be-
tween two communities the dynamics of the activity spread-
ing demonstrates a two-tiered structure, that is, the peak rates
of the cascading processes in two communities are separated
in time. This pattern is reminiscent of multipeak structure of
sexually transmitted infection dynamics, previously reported
in Ref. �17�. We studied this phenomenon both experimen-
tally and theoretically using annealed approximation and ob-
tained a good agreement between analytical results and
simulations. Although our model is for undirected binary
graphs, generalizations to directed and/or weighted graphs is
straightforward. Directed models can be relevant if the inter-
actions between two nodes are not symmetric.

The results presented here might have implications in
problems such as epidemiology, viral marketing, and so on.
Consider, for example, the problem of minimizing the num-
ber of seed nodes that will cause a global cascade in a given
network, or more generally, the problem of maximizing a
certain utility function f�N0 ,Ns�, where N0 is the number of
seed nodes and Ns is the expected size of the cascade. Our
results suggest that simple strategies that are suitable for ho-
mogenous networks �e.g., choosing nodes with high connec-
tivity, or at random�, might lead to a suboptimal solution for
networks with a strongly modular structure. We note, how-
ever, that in order to assess the implication of our findings in
real world problems, one needs to generalize the approach
developed here to more complex networks.
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